English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Development of a murine model of airway inflammation and remodeling in experimental asthma].

BACKGROUND AND OBJECTIVE: Experimental animal models are necessary for studying asthma disease mechanisms and for identifying new therapeutic targets. We present a murine model of experimental asthma that allows integrated, quantitative assessment of airway inflammation and remodeling.

MATERIAL AND METHODS: BALB/c mice were sensitized to ovalbumin (OVA) and challenged with OVA or vehicle 3 times per week for 12 weeks.

RESULTS: On bronchoalveolar lavage, the OVA-sensitized mice had significantly higher total leukocyte counts, with a median (Q25-Q75) of 670.0 cells/mL x 10(3) (376.2, 952.5) in comparison with 40.0 cells/mL x 10(3) (60.0-85.0) in controls (P=.001), and higher eosinophil and differential lymphocyte counts. In sagittal sections of lungs inflated to a standard pressure, the OVA-sensitized animals showed goblet cell hyperplasia in the respiratory epithelium (periodic acid-Schiff staining, 53.89 [36.26-62.84]cells/mm(2) vs 0.66 [0.00-1.06]cells/mm(2), P<.001), dense mononuclear and eosinophilic inflammatory infiltrates (hematoxylin-eosin, 32.87 [27.34-37.13]eosinophils/mm(2) vs 0.06 [0.00-0.20]eosinophils/mm(2), P=.002), subepithelial infiltration by mast cells (toluidine blue, 2.88 [2.00-3.28] mast cells/mm(2) vs 0.28 [0.15-0.35] mast cells/mm(2), P<.001), increased contractile tissue mass (immunofluorescence analysis for alpha-smooth-muscle actin, 2.60 [2.28-2.98] vs 1.08 [0.93-1.16], dimensionless, P<.001) and enhanced extracellular matrix deposition (Masson's trichrome, 2.18 [1.85-2.80] vs 0.50 [0.37-0.65], dimensionless, P<.001).

CONCLUSIONS: Our dataset describes an experimental model of asthma which is driven by prolonged allergen exposure and in which airway inflammation and remodeling develop and are assessed together.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app