Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre.

Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app