A phylogenomic approach for studying plastid endosymbiosis

Ahmed Moustafa, Cheong Xin Chan, Megan Danforth, David Zear, Hiba Ahmed, Nagnath Jadhav, Trevor Savage, Debashish Bhattacharya
Genome Informatics 2008, 21: 165-76
Gene transfer is a major contributing factor to functional innovation in genomes. Endosymbiotic gene transfer (EGT) is a specific instance of lateral gene transfer (LGT) in which genetic materials are acquired by the host genome from an endosymbiont that has been engulfed and retained in the cytoplasm. Here we present a comprehensive approach for detecting gene transfer within a phylogenetic framework. We applied the approach to examine EGT of red algal genes into Thalassiosira pseudonana, a free-living diatom for which a complete genome sequence has recently been determined. Out of 11,390 predicted protein-coding sequences from the genome of T. pseudonana, 124 (1.1%, clustered into 80 gene families) are inferred to be of red algal origin (bootstrap support >or= 75%). Of these 80 gene families, 22 (27.5%) encode novel, unknown functions. We found 21.3% of the gene families to putatively encode non-plastid-targeted proteins. Our results suggest that EGT of red algal genes provides a relatively minor contribution to the nuclear genome of the diatom, but the transferred genes have functions that extend beyond photosynthesis. This assertion awaits experimental validation. Whereas the current study is focused within the context of secondary endosymbiosis, our approach can be applied to large-scale detection of gene transfer in any system.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"