Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches.

Chemosphere 2009 January
A previously developed potential cleanup tool for atrazine contaminated soils was evaluated in larger open soil microcosms for optimization under more realistic conditions, using a natural crop soil spiked with an atrazine commercial formulation (Atrazerba FL). The doses used were 20x or 200x higher than the recommended dose (RD) for an agricultural application, mimicking over-use or spill situations. Pseudomonas sp. strain ADP was used for bioaugmentation (around 10(7) or 10(8) viable cells g(-1) of soil) and citrate for biostimulation (up to 4.8 mg g(-1) of soil). Bioremediation treatments providing fastest and higher atrazine biodegradation proved to differ according to the initial level of soil contamination. For 20x RD of Atrazerba FL, a unique inoculation with Pseudomonas sp. ADP (9 +/- 1 x 10(7) CFU g(-1)) resulted in rapid atrazine removal (99% of the initial 7.2 +/- 1.6 microg g(-1) after 8d), independent of citrate. For 200x RD, an inoculation with the atrazine-degrading bacteria (8.5 +/- 0.5 x 10(7) CFU g(-1)) supplemented with citrate amendment (2.4 mg g(-1)) resulted in improved biodegradation (87%) compared with bioaugmentation alone (79%), even though 7.8 +/- 2.1 microg of atrazine g(-1) still remained in the soil after 1 wk. However, the same amount of inoculum, distributed over three successive inoculations and combined with citrate, increased Pseudomonas sp. ADP survival and atrazine biodegradation (to 98%, in 1 wk). We suggest that this bioremediation tool may be valuable for efficient removal of atrazine from contaminated field soils thus minimizing atrazine and its chlorinated derivatives from reaching water compartments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app