Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent.

Solid dispersions of a poorly water-soluble drug piroxicam in polyvinylpyrrolidone (PVP) were prepared by precipitation with compressed antisolvent (PCA) and spray drying techniques. Physicochemical properties of the products and drug-polymer interactions were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry, etc. Piroxicam was found amorphously dispersed in both solid dispersion systems with the drug to polymer weight ratio of 1:4. Spectra data indicated the formation of hydrogen bonding between the drug and the polymer. Both techniques evaluated in this work resulted in improved dissolution of piroxicam. By comparison, PCA-processed solid dispersions showed distinctly superior performance in that piroxicam dissolved completely within the first 5 min and the dissolution rate was at least 20 times faster than raw drug did within the first 15 min. PCA processing could provide an effective pharmaceutical formulation technology to improve the bioavailability of poorly water-soluble drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app