Add like
Add dislike
Add to saved papers

DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells.

Density functional theory (DFT) and time-dependent DFT calculations have been employed to model Zn meso-tetraphenylporphyrin (ZnTPP) complexes having different beta-substituents, in order to design an efficient sensitizer for dye-sensitized solar cells. To calculate the excited states of the porphyrin analogues, at least the TD-B3LYP/6-31G* level of theory is needed to replicate the experimental absorption spectra. Solvation results were found to be invariant with respect to the type of model used (PCM vs. C-PCM). Most of the electronic transitions based on Gouterman's four-orbital model of ZnTPP-A and ZnTPP-B are pi --> pi* transitions, so that cell efficiency can be enhanced by increasing the pi-conjugation and electron-withdrawing capability of the beta-substituent. This proposition was tested by inserting thiophene into the beta-substituent of ZnTPP-A to form a new analogue, ZnTPP-C. Compared with ZnTPP-A and ZnTPP-B, ZnTPP-C has a smaller band gap, which brings LUMO closer to the conduction band of TiO2, and a red-shifted absorption spectrum with higher extinction coefficients, especially in the Q-band position.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app