Add like
Add dislike
Add to saved papers

In vivo kinematic analysis of a high-flexion posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion.

The objective of this study was to evaluate in vivo kinematics of a high-flexion, posterior-stabilized fixed-bearing, total knee arthroplasty in weight-bearing deep knee-bending motion. A total of 20 knees implanted with the Scorpio Non-Restrictive Geometry knee system in 17 patients were assessed in this study. The Scorpio Non-Restrictive Geometry is a recent implant design with modifications made to accommodate a higher flexion range of motion and greater axial rotation, particularly during more functionally demanding activities. Patients were examined during a deep knee-bending motion using fluoroscopy, and femorotibial motion was determined using a 2-dimensional to 3-dimensional registration technique. The average flexion angle was 126.5 degrees (110 degrees -149 degrees ). The femoral component demonstrated a mean of 13.5 degrees (5.2 degrees -21 degrees ) external rotation. The external rotation increased up to maximum flexion. The pivot pattern was a medial pivot pattern similar to that reported in normal knee kinematics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app