Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder.

CONTEXT: Vigilance for threat is a key feature of generalized anxiety disorder (GAD). The amygdala and the ventrolateral prefrontal cortex constitute a neural circuit that is responsible for detection of threats. Disturbed interactions between these structures may underlie pediatric anxiety. To date, no study has selectively examined responses to briefly presented threats in GAD or in pediatric anxiety.

OBJECTIVE: To investigate amygdala and ventrolateral prefrontal cortex activation during processing of briefly presented threats in pediatric GAD.

DESIGN: Case-control study.

SETTING: Government clinical research institute.

PARTICIPANTS: Youth volunteers, 17 with GAD and 12 without a psychiatric diagnosis.

MAIN OUTCOME MEASURES: We used functional magnetic resonance imaging to measure blood oxygenation level-dependent signal. During imaging, subjects performed an attention-orienting task with rapidly presented (17 milliseconds) masked emotional (angry or happy) and neutral faces.

RESULTS: When viewing masked angry faces, youth with GAD relative to comparison subjects showed greater right amygdala activation that positively correlated with anxiety disorder severity. Moreover, in a functional connectivity (psychophysiological interaction) analysis, the right amygdala and the right ventrolateral prefrontal cortex showed strong negative coupling specifically to masked angry faces. This negative coupling tended to be weaker in youth with GAD than in comparison subjects.

CONCLUSIONS: Youth with GAD have hyperactivation of the amygdala to briefly presented masked threats. The presence of threat-related negative connectivity between the right ventrolateral prefrontal cortex and the amygdala suggests that the prefrontal cortex modulates the amygdala response to threat. In pediatric GAD, amygdala hyperresponse occurs in the absence of a compensatory increase in modulation by the ventrolateral prefrontal cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app