Add like
Add dislike
Add to saved papers

Supramolecular polymerization and polymorphs of oligo(p-phenylene vinylene)-functionalized bis- and monoureas.

Bis- and monoureas hybridized with the oligo(p-phenylene vinylene) (OPV) pi-electronic segment and 3,4,5-tridodecyloxyphenyl wedge were synthesized and their supramolecular polymerization in diluted solution, gel formation in concentrated solution, and liquid crystallinity in bulk state were investigated. Bisurea 1a featuring a hexamethylene linker showed the highest supramolecular polymerization ability and formed tapelike nanofibers that can gelate various organic solvents. On the other hand, bisurea 1b featuring a dodecamethylene linker and monourea 2 showed a lower degree of supramolecular polymerization, resulting in gel formations in a smaller variety of solvents. These results clearly reflect a high level of cooperativity between the two urea sites and the two OPV segments of 1a upon hydrogen-bonding and pi-pi stacking interactions, respectively. When the gels of 1a, 1b, and 2 were dried, all the compounds self-organized into multilamellar superstructures. Thermal treatment of these lamellae at high temperatures induces columnar liquid-crystalline mesophases as a result of microsegregation between the rigid OPV parts and the molten aliphatic wedges. These results demonstrate that the present molecular constituent is very useful for fabricating dye-based functional assemblies providing nanoscale pi-electronic fibers, and solvent-incorporated and bulk soft materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app