Journal Article
Multicenter Study
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Population pharmacokinetic and pharmacodynamic analysis of pegloticase in subjects with hyperuricemia and treatment-failure gout.

Pegloticase is designed to convert urate into the easily excretable allantoin to treat hyperuricemia in gout. The aim of this analysis was to describe the pharmacokinetics and pharmacodynamics of pegloticase in 40 gout patients. Pegloticase was administered as intravenous infusions every 2 weeks at 4- and 8-mg doses or every 4 weeks at 8- or 12-mg doses for 12 weeks. Serum pegloticase concentrations, plasma urate, and serum antibody response were determined. Population pharmacokinetics and pharmacodynamics analyses were performed. Data were modeled simultaneously, and covariates were investigated (age, gender, race, body weight, ideal body weight, and antibody response). The dosing regimens to maintain uric acid levels below the therapeutic target of 6 mg/dL were then predicted by the model. The pharmacokinetics were best described by a 1-compartment linear model, while the pharmacodynamics model was fitted as a direct effect of pegloticase on uric acid concentrations with a suppressive maximum effect attributed to drug (E(max)) function. Pegloticase suppressed uric acid levels up to 83%. Weight only affected clearance and volume of distribution. No covariates affected pharmacodynamics. Simulation suggests pegloticase administered at 8 mg every 2 or 4 weeks as 2-hour intravenous infusions will maintain uric acid levels well under 6 mg/dL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app