Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuroprotection of hypothermia against neuronal death in rat hippocampus through inhibiting the increased assembly of GluR6-PSD95-MLK3 signaling module induced by cerebral ischemia/reperfusion.

Kainate receptor containing GluR6 subunit (KAR) is involved in the neuronal cell death induced by cerebral ischemia/reperfusion (I/R). Hypothermia is an effective neuroprotectant in brain ischemia, whereas the neuroprotective mechanisms have not been clearly established. The present study was set out to examine whether hypothermia would cause the alternation of the assembly of the GluR6-PSD95-MLK3 signaling module and the activation of c-Jun N-terminal kinase (JNK) pathway through KAR. Hypothermia (32 degrees C) was induced 10 min before ischemia and was maintained for 3 h after ischemia. Our results indicated that hypothermia could inhibit the assembly of GluR6-PSD95-MLK3 signaling module and suppressed the activation of MLK3, MKK4/7, and JNK3. The inhibition of JNK3 activation by hypothermia diminished the phosphorylation of the transcription factor c-Jun and downregulated FasL expression in hippocampal CA1. Meanwhile, the inhibition of JNK3 activation by hypothermia attenuated bax translocation, the release of cytochrome c, and the activation of caspase-3 in CA1 subfields. Both GluR6 antagonist NS102 and GluR6 antisense oligodeoxynucleotides partly blocked the aforementioned effects of hypothermia, which was further confirmed by histology. Taken together, our results strongly suggest that hypothermia decreased the increased assembly of the GluR6-PSD95-MLK3 signaling module and the activation of JNK pathway induced by I/R through KAR, which gave a new insight into the ischemic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app