Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

A predictive approach to correlating protein adsorption isotherms on ion-exchange media.

The equilibrium adsorption of three small basic proteins was measured on cation exchangers under various solution conditions and was used as the basis for developing a predictive approach for correlating adsorption behavior. A mechanistically based isotherm model is used to model the equilibrium adsorption so as to facilitate isotherm prediction using minimal experimental data. The model explicitly considers the contributions of protein-surface and protein-protein interactions, and decoupling them allows each to be correlated with different experimental measurements. Specifically, protein-surface interactions are related to chromatographic data in the form of the isocratic retention factor (k'), while protein-protein interactions are analyzed on the basis of high-coverage isotherm data on an arbitrary stationary phase. Analysis of experimental data within this framework reveals a high level of consistency. The model is also used to facilitate prediction of adsorption isotherms on other ion-exchange media using isotherms on one adsorbent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app