The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections

Jonathan P McNamara, Raman Sharma, Mark A Vincent, Ian H Hillier, Claudio A Morgado
Physical Chemistry Chemical Physics: PCCP 2008 January 7, 10 (1): 128-35
Density functional theory (DFT-D) and semi-empirical (PM3-D) methods having an added empirical dispersion correction have been used to study the binding of a series of small molecules and planar aromatic molecules to single-walled carbon nanotubes (CNTs). For the small molecule set, the PM3-D method gives a mean unsigned error (MUE) in the binding energies of 1.2 kcal mol(-1) when judged against experimental reference data for graphitic carbon. This value is close to the MUE for this method compared to high-level ab initio data for biological complexes. The PM3-D and DFT-D calculations describing the adsorption of the planar organic molecules (benzene, bibenzene, naphthalene, anthracene, TCNQ and DDQ) on the outer-walls of both semi-conducting and metallic CNTs give similar binding energies for benzene and DDQ, but do not display a stronger adsorption on [6,6] compared to [10,0] structures shown by another DFT study.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"