English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Either calcium carbonate or sevelamer decreases urinary oxalate excretion in chronic renal failure patients].

The rate of oxalate absorbed from intestine is highly influenced by calcium intake in healthy subjects. It is unknown whether commonly used phosphate binders modify intestinal absorption and renal excretion of oxalate in chronic kidney disease (CKD) patients. This study aims to determine if calcium carbonate or sevelamer influences on urinary oxalate excretion. Twenty patients with CKD (stage 4 and 5 pre-dialysis) were included. Two treatment (1500 mg of calcium carbonate or 2400 mg of sevelamer), two-period (21 days each), crossover study with balanced assignment of the order of administration, and two washout periods were the main characteristics of this study design. Laboratory analyses in each phase included: serum creatinine, calcium, phosphorus, bicarbonate, total cholesterol, and 24 h urinary excretion of oxalate, creatinine, and urea. Creatinine clearance, protein catabolic rate (PNNA), total urinary oxalate excretion, and urinary oxalate / creatinine ratio were determined. Seventeen patients completed both treatment sequences. Total urinary oxalate excretion and urinary oxalate / creatinine ratios decreased significantly with respect to washout periods either after sevelamer or calcium carbonate treatment. The decrease in urinary oxalate excretion was greater after calcium carbonate (41.2+/-17.4%) than after sevelamer treatment (30.4+/-23.8%). There were not significant changes in renal function or PNNA values throughout the study periods. In conclusion, either calcium carbonate or sevelamer significantly reduces urinary oxalate excretion in CKD patients. Further studies will be needed to ascertain whether the type of phosphate binder influences on the accumulation of oxalate in CKD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app