Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Magnetic resonance imaging and model prediction for thermal ablation of tissue.

PURPOSE: To monitor and predict tissue temperature distributions and lesion boundaries during thermal ablation by combining MRI and thermal modeling methods.

MATERIALS AND METHODS: Radiofrequency (RF) ablation was conducted in the paraspinal muscles of rabbits with MRI monitoring. A gradient-recalled echo (GRE) sequence via a 1.5T MRI system provided tissue temperature distribution from the phase images and lesion progression from changes in magnitude images. Post-ablation GRE estimates of lesion size were compared with post-ablation T2-weighted turbo-spin-echo (TSE) images and hematoxylin and eosin (H&E)-stained histological slices. A three-dimensional (3D) thermal model was used to simulate and predict tissue temperature and lesion size dynamics.

RESULTS: The lesion area estimated from repeated GRE images remained constant during the post-heating period when the temperature of the lesion boundary was less than a critical temperature. The final lesion areas estimated from multi-slice (M/S) GRE, TSE, and histological slices were not statistically different. The model-simulated tissue temperature distribution and lesion area closely corresponded to the GRE-based MR measurements throughout the imaging experiment.

CONCLUSION: For normal tissue in vivo, the dynamics of tissue temperature distribution and lesion size during RF thermal ablation can be 1) monitored with GRE phase and magnitude images, and 2) simulated for prediction with a thermal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app