Add like
Add dislike
Add to saved papers

Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk.

The adsorption of Pb(II) and Cd(II) metal ions on mustard husk has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using Langmuir and Freundlich isotherm models. The adsorption isotherm studies clearly indicated that the adsorptive behavior of Pb(II) and Cd(II) metal ions on mustard husk satisfies not only the Langmuir assumptions but also the Freundlich assumptions, i.e. multilayer formation on the surface of the adsorbent with an exponential distribution of site energy. Ion exchange and surface complexation are the major adsorption mechanisms involved. The applicability of Lagergren kinetic model has also been investigated. Thermodynamic constant (k(ad)), free energy change (DeltaG), enthalpy change (DeltaH) and entropy change (DeltaS) were calculated for predicting the nature of adsorption. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app