Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation

Cameron R Stewart, Leanne M Wilson, Qinghai Zhang, Chi L L Pham, Lynne J Waddington, Maree K Staples, David Stapleton, Jeffery W Kelly, Geoffrey J Howlett
Biochemistry 2007 May 8, 46 (18): 5552-61
Apolipoprotein amyloid deposits and lipid oxidation products are colocalized in human atherosclerotic tissue. In this study we show that the primary ozonolysis product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (KA), rapidly promotes human apolipoprotein (apo) C-II amyloid fibril formation in vitro. Previous studies show that hydrophobic aldehydes, including KA, modify proteins by the formation of a Schiff base with the lysine epsilon-amino group or N-terminal amino group. High-performance liquid chromatography, mass spectrometry, and proteolysis of KA-modified apoC-II revealed that KA randomly modified six different lysine residues, with primarily one KA attached per apoC-II molecule. Competition experiments showed that an aldehyde scavenging compound partially inhibited the ability of KA to hasten apoC-II fibril formation. Conversely, the acid derivative of KA, lacking the ability to form a Schiff base, accelerated apoC-II fibril formation, albeit to a lesser extent, suggesting that amyloidogenesis triggered by KA involves both covalent and noncovalent mechanisms. The viability of a noncovalent mechanism mediated by KA has been observed previously with alpha-synuclein aggregation, implicated in Parkinson's disease. Electron microscopy demonstrated that fibrils formed in the presence of KA had a similar morphology to native fibrils; however, the isolated KA-apoC-II covalent adducts in the absence of unmodified apoC-II formed fibrillar structures with altered ropelike morphologies. KA-mediated fibril formation by apoC-II was inhibited by the addition of the amine-containing compound hydralazine and the lipid-binding protein apoA-I. These in vitro studies suggest that the oxidized small molecule pool could trigger or hasten the aggregation of apoC-II to form amyloid deposits.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"