JOURNAL ARTICLE

Quantifying a bystander response following microbeam irradiation using single-cell RT-PCR analyses

Brian Ponnaiya, Gloria Jenkins-Baker, Gerhard Randers-Pherson, Charles R Geard
Experimental Hematology 2007, 35 (4): 64-8
17379089

OBJECTIVE: There is growing recognition that the effects of ionizing radiation may extend to more than those cells that directly suffer damage to DNA in the cell nucleus. Data from several investigators have indicated that cells neighboring those that are irradiated also demonstrate several responses seen in hit cells--the so-called bystander effect. The microbeam facility at the Center for Radiological Research is particularly well suited for the study of this bystander effect, since it has the ability to place known numbers of charged particles (protons or alpha-particles at LETs from 20 to 180 KeV/microm) at defined positions relative to individual cells. That is, some known fraction of cells in a population can be irradiated through the nucleus, or the cytoplasm or even adjacent to cells through the media. Therefore, using the microbeam it is possible to examine individual cell responses in both hit and nonhit cells in the same population.

METHOD AND RESULTS: Alterations in the cyclin-dependent kinase inhibitor CDKN1a (p21/Cip1/WAF1) were quantified at the mRNA level in single normal human fibroblasts following precise delivery of 0 or 10 alpha-particles per cell at 90 KeV/microm to 50% of cells in a population. Semiquantitative RT-PCR of individual hit cells demonstrated increases in the levels of CDKN1A message that followed the kinetics previously described for irradiated populations. Furthermore, nonhit bystander cells also showed increased (though lesser) levels of CDKN1a message.

CONCLUSION: Data presented here demonstrate the power of this approach, which combines the ability of the microbeam to irradiate specific cells in a population and the ability to quantify the response to the irradiation in individual targeted and bystander cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17379089
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"