Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Absence of Bcl-xL down-regulation in response to cisplatin is associated with chemoresistance in ovarian carcinoma cells.

OBJECTIVE: Recurrence and subsequent acquired chemoresistance to platinum-based treatments constitute major hurdles to ovarian carcinoma therapy. Our objective was to examine the involvement of Bcl-xL anti-apoptotic protein in resistance to cisplatin.

METHODS: We described the effect of cisplatin on cell cycle and apoptosis induction in sensitive (IGROV1 and OAW42) and resistant (IGROV1-R10 and SKOV3) ovarian carcinoma cell lines. We correlated it with Bcl-xL mRNA and protein expression after exposure to cisplatin. We then used bcl-xS gene transfer to impede Bcl-xL activity.

RESULTS: Our study showed that Bcl-xL basal expression was high in both sensitive and resistant cell lines, as well as in all the studied ovarian tumor samples. Thus, Bcl-xL basal expression could not allow to predict sensitivity. Wondering whether variation of Bcl-xL level in response to cisplatin could be a better determinant of sensitivity, we investigated the expression of this protein in the cell lines after treatment. Cisplatin-induced down-regulation of Bcl-xL was strictly associated with apoptosis and absence of recurrence in vitro. Conversely, the maintenance of Bcl-xL expression in response to cisplatin appeared as a sine qua non condition to escape to treatment. To try to sensitize SKOV3 cells by impeding anti-apoptotic activity of Bcl-xL, we transfected bcl-xS gene in these cells. Bcl-xS exogenous expression was only slightly cytotoxic on its own, but highly sensitized SKOV3 resistant cells to cisplatin-induced apoptosis, and delayed recurrence.

CONCLUSION: This work thus provides one more argument to put Bcl-xL forward as a pertinent target of inhibition to overcome chemoresistance of epithelial ovarian carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app