Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system.

The advantages of integrating microfluidics into photonics-based biosensing for fabricating microreactor type lab-on-a-chip devices carries a lot of advantages, such as smaller sample volume handling, controlled drug delivery and high throughput diagnosis, which is useful for in situ medical diagnosis and point-of-care (POC) testing. A hybrid integrated optical microfluidic system has been developed for the study of single molecules and enzymatic reactions. The method of optical absorption has been employed for biosensing and the feasibility of absorption-based detection on the microfluidic platform has been demonstrated using horseradish peroxidase and hydrogen peroxide, as an example. The results show that the device is useful for the analysis of both the individual chemical specimen and also the study of chemical and biological reaction between two reacting species. The hybrid integration of microfluidics and optical ensembles thus forms the basis for developing the microreactor type lab-on-a-chip device, which would have several important applications in the area of nanobiotechnology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app