Add like
Add dislike
Add to saved papers

Differences of Eu(III) and Cm(III) chemistry in ionic liquids: investigations by TRLFS.

In this study the coordination structure and chemistry of Eu(III) and Cm(III) in the ionic liquid C(4)mimTf(2)N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The dissolution of 1 x 10(-2) M Eu(CF(3)SO(3))(3) and 1 x 10(-7) M Cm(ClO(4))(3) in C(4)mimTf(2)N leads to the formation of two species for each cation with fluorescence emission lifetimes of 2.5 +/- 0.2 ms and 1.0 +/- 0.3 ms for the Eu-species and 1.0 +/- 0.3 ms and 300.0 +/- 50 micros for the Cm-species. The interpretation of the TRLFS data indicates a comparable coordination for both the lanthanide and actinide cation in this ionic liquid. The quenching influence of Cu(II) on the fluorescence emission of Eu(III) and Cm(III) was also measured by TRLFS. While Cu(ii) does not quench the Cm(III) fluorescence emission in C(4)mimTf(2)N the Eu(III) fluorescence emission lifetime for both Eu-species in C(4)mimTf(2)N decreases with increasing Cu(II) concentration. Stern-Volmer constants were calculated (k(SV) = 1.54 x 10(6) M(-1) s(-1) and k(SV) = 2.70 x 10(6) M(-1)). By contrast, the interaction of Cu(II) with Eu(III) and Cm(III) in water leads to a quenching of both the lanthanide and actinide fluorescence. The calculated Stern-Volmer constants are 1.20 x 10(4) M(-1) s(-1) for Eu(III) and 1.27 x 10(4) M(-1) s(-1) for Cm(III). The investigations show, while the chemistry of trivalent lanthanides and actinides is similar in an aqueous system it is dramatically different in ionic liquids. This difference in chemical behavior may provide the opportunity for a separation of lanthanides and actinides with regard to the reprocessing of nuclear fuel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app