Add like
Add dislike
Add to saved papers

Photophysics of GaSe/InSe nanoparticle heterojunctions.

The photophysics of mixed aggregates of GaSe/InSe nanoparticles have been studied using static and time-resolved absorption and emission spectroscopies. The results indicate that the GaSe/InSe interfaces form heterojunctions and exhibit photoinduced direct charge transfer from the GaSe valence band to the InSe conduction band. This results in the electrons and holes being localized separately in these two types of nanoparticles. The energy diagram of the nanoparticle heterojunction can be constructed from the static spectra, known bulk band offsets, and quantum confinement effects. These considerations accurately predict the energy of the observed charge-transfer band. Photoexcitation also produces excitons in the aggregates, away from the heterojunctions. These excitons can undergo diffusion and quench upon reaching a heterojunction. Time-resolved fluorescence kinetics can be modeled to extract an exciton diffusion coefficient. A value of 2.0 nm2/ns is obtained, which is in good agreement with values obtained from previous fluorescence anisotropy decay measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app