Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Disorder and sequence repeats in hub proteins and their implications for network evolution.

Protein interaction networks display approximate scale-free topology, in which hub proteins that interact with a large number of other proteins determine the overall organization of the network. In this study, we aim to determine whether hubs are distinguishable from other networked proteins by specific sequence features. Proteins of different connectednesses were compared in the interaction networks of Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Homo sapienswith respect to the distribution of predicted structural disorder, sequence repeats, low complexity regions, and chain length. Highly connected proteins ("hub proteins") contained significantly more of, and greater proportion of, these sequence features and tended to be longer overall as compared to less connected proteins. These sequence features provide two different functional means for realizing multiple interactions: (1) extended interaction surface and (2) flexibility and adaptability, providing a mechanism for the same region to bind distinct partners. Our view contradicts the prevailing view that scaling in protein interactomes arose from gene duplication and preferential attachment of equivalent proteins. We propose an alternative evolutionary network specialization process, in which certain components of the protein interactome improved their fitness for binding by becoming longer or accruing regions of disorder and/or internal repeats and have therefore become specialized in network organization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app