Comparative Study
Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols.

The gingerols, including [6]-, [8]-, and [10]-gingerols, a series of chemical homologs differentiated by the length of their unbranched alkyl chains, have been identified as major active components in fresh ginger rhizome. The purpose of this study was to investigate the utility of ion trap liquid chromatography/tandem mass spectrometry (LC/MS/MS) as an online tool to identify and quantify these compounds in raw or processed ginger rhizome samples. Negative mode electrospray ionization (ESI) was used in MS, MS/MS and MS(n) experiments in quadrupole ion trap instruments from two different manufacturers and in high-resolution and accurate mass MS and MS/MS experiments in a Fourier transform ion cyclotron resonance mass spectrometer to elucidate the ionization and fragmentation mechanisms of these compounds in these instruments. Positive mode ESI, which generated many more fragment ions in full scan MS even under gentle ionization conditions, was also used in LC/MS and MS/MS experiments and in direct infusion MS and MS/MS experiments. Consistent and predictable ionization and fragmentation behaviors were observed for all gingerols when analyzed in the same instrument. Instruments from different manufacturers, however, had different ionization mechanisms. The major difference between instruments was their ability to form covalent dimer adducts of the gingerols. Subsequent fragmentation patterns of the precursor ions were essentially identical. These results clearly demonstrate that LC/MS instruments produce data that cannot necessarily be replicated in other laboratories, especially if those laboratories do not have the same instrument model from the same manufacturer. This presents major problems for metabolite target analysis, metabolic profiling and metabolomics investigations, which would benefit from LC/MS mass spectrum libraries as they do from GC/MS mass spectrum libraries, because such libraries may not be valid across platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app