Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Biomechanical analysis of blade plate versus locking plate fixation for a proximal humerus fracture: comparison using cadaveric and synthetic humeri.

OBJECTIVE: To compare the mechanical stability of a fixed-angle blade plate with that of a locking plate in a cadaveric proximal humerus fracture-fixation model subjected to cyclic loading. A secondary objective was to evaluate whether the use of synthetic humerus specimens would replicate significant differences found during cadaveric tests.

DESIGN: Mechanical evaluation of constructs in bending and torsion.

SETTING: Biomechanical laboratory in an academic medical center.

METHODS: Simulated humeral neck fractures (Orthopaedic Trauma Association (OTA) classification 11A3), in matched-pair cadaveric and synthetic specimens underwent fixation using either a 3.5-mm, 90-degree cannulated LC-Angled Blade Plate or a 3.5-mm LCP Proximal Humerus Locking Plate. Cadaveric specimen constructs were cyclically loaded in bending and torsion; synthetic specimens were tested in torsion.

MAIN OUTCOME MEASURE: Humeral shaft-bending displacements and angular rotations for respective cyclic bending loads and axial torques were recorded and compared at repeated cyclic intervals to evaluate construct loosening.

RESULTS: Locking-plate constructs exhibited significantly less loosening than blade-plate constructs for torsional loading in cadaveric specimens (P = 0.036). The two types of constructs performed similarly for torsional loading in synthetic specimens (P = 0.100). Under cyclic, closed-bending load conditions in which the plates served as tension members, both types of constructs performed similarly in cadaveric specimens (P = 0.079).

CONCLUSIONS: For simulated humeral neck fractures subjected to cyclic loading, locking-plate constructs demonstrated significantly greater torsional stability and similar bending stability to blade plates in a cadaveric specimen model. In contrast, these same constructs performed similarly with torsional loading when using synthetic humerus specimens. These results indicate potential advantages for locking-plate fixation. They also indicate that the synthetic specimens tested may not be appropriate for evaluating fixation stability in the humeral head, where cancellous bone fixation predominates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app