Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity.

Polymeric nanostructures with high aspect ratios, so-called nanopillars, are of interest for a wide range of applications. However, it remains a challenge to fabricate high-density, polymeric nanopillars using soft lithography when the feature size is decreased to hundreds of nanometers and the structures are close to each other. Here, we investigate the fidelity of replica molding technique to fabricate polymer nanopillar arrays with diameters ranging from 300 nm to 1 mum, and we compare the experimental results to the theoretical prediction to understand the nature of the instability of nanopillars. Nanopillars molded from soft materials, poly(dimethylsiloxane) (PDMS), mainly ground collapse due to the adhesive force when the aspect ratio is above 6, whereas those from stiffer materials, polyurethane and epoxy, collapse laterally at a much higher aspect ratio (>/=12), of which the critical value is dependent on the nanopillar's feature size, spacing, height, and shape. Further, we attempt to restore the collapsed high-aspect-ratio nanopillars using supercritical CO(2) drying.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app