Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Methods and mechanisms for contact feedback in a robot-assisted minimally invasive environment.

Surgical Endoscopy 2006 October
Providing a surgeon with information regarding contacts made between instruments and tissue during robot-assisted interventions can improve task efficiency and reliability. In this report, different methods for feedback of such information to the surgeon are discussed. It is hypothesized that various methods of contact feedback have the potential to enhance performance in a robot-assisted minimally invasive environment. To verify the hypothesis, novel mechanisms needed for incorporating contact feedback were designed, including a surgeon-robot interface with full force feedback capabilities and a surgical end-effector with full force sensing capabilities, that are suitable for minimally invasive applications. These two mechanisms were used to form a robotic "master-slave" test bed for studying the effect of contact feedback on the system and user performance. Using the master-slave system, experiments for surgical tasks involving soft tissue palpation were conducted. The performance of the master-slave system was validated in terms of criteria that assess the accurate transmission of task-related information to the surgeon, which is critical in the context of soft tissue surgical applications. Moreover, using a set of experiments involving human subjects, the performance of several users in carrying out the task was compared among different methods of contact feedback.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app