Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Relationship among alpha-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra.

The histologic hallmark of Parkinson disease (PD) is loss of pigmented neurons in the substantia nigra (SN) and locus ceruleus (LC) with accumulation of alpha-synuclein (alphaS). It has been reported that tyrosine hydroxylase (TH)-negative pigmented neurons are present in these nuclei of patients with PD. However, the relationship between TH immunoreactivity and alphaS accumulation remains uncertain. We immunohistochemically examined the SN and LC from patients with PD (n = 10) and control subjects (n = 7). A correlation study indicated a close relationship among decreased TH immunoreactivity, alphaS accumulation, and neuronal loss. In addition, 10% of pigmented neurons in the SN and 54.9% of those in the LC contained abnormal alphaS aggregates. Moreover, 82.3% of pigmented neurons bearing alphaS aggregates in the SN and 39.2% of those in the LC lacked TH immunoreactivity, suggesting that pigmented neurons in the SN have a greater tendency to lack TH activity than those in the LC. Recent studies have shown that this decrease of TH activity leads to a decrease of cytotoxic substances and that decreased dopamine synthesis leads to a reduction of cytotoxic alphaS oligomers. Therefore, the decrease of TH immunoreactivity in pigmented neurons demonstrated here can be considered to represent a cytoprotective mechanism in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app