Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin.

Developmental Cell 2006 August
beta-catenin-mediated Wnt signaling is critical in animal development and tumor progression. The single-span transmembrane Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6), interacts with Axin to promote the Wnt-dependent accumulation of beta-catenin. However, the molecular mechanism of receptor internalization and its impact on signaling are unclear. Here, we present evidence that LRP6 is internalized with caveolin and that the components of this endocytic pathway are required not only for Wnt-3a-induced internalization of LRP6 but also for accumulation of beta-catenin. Overall, our data suggest that Wnt-3a triggers the interaction of LRP6 with caveolin and promotes recruitment of Axin to LRP6 phosphorylated by glycogen synthase kinase-3beta and that caveolin thereby inhibits the binding of beta-catenin to Axin. Thus, caveolin plays critical roles in inducing the internalization of LRP6 and activating the Wnt/beta-catenin pathway. We also discuss the idea that distinct endocytic pathways correlate with the specificity of Wnt signaling events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app