Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes.

Glia 2006 October
Neural stem cells in the adult subventricular zone (SVZ) derive from radial glia and express the astroglial marker glial fibrillary acidic protein (GFAP). Thus, they have been termed astrocytes. However, it remains unknown whether these GFAP-expressing cells express the functional features common to astrocytes. Using immunostaining and patch clamp recordings in acute slices from transgenic mice expressing green fluorescent protein (GFP) driven by the promoter of human GFAP, we show that GFAP-expressing cells in the postnatal SVZ display typical glial properties shared by astrocytes and prenatal radial glia such as lack of action potentials, hyperpolarized resting potentials, gap junction coupling, connexin 43 expression, hemichannels, a passive current profile, and functional glutamate transporters. GFAP-expressing cells express both GLAST and GLT-1 glutamate transporters but lack AMPA-type glutamate receptors as reported for dye-coupled astrocytes. However, they lack 100 microM Ba2+-sensitive inwardly rectifying K+ (K(IR)) currents expressed by astrocytes, but display delayed rectifying K+ currents and 1 mM Ba2+-sensitive K+ currents. These currents contribute to K+ transport at rest and maintain hyperpolarized resting potentials. GFAP-expressing cells stained positive for both K(IR)2.1 and K(IR)4.1 channels, two major K(IR) channels in astrocytes. Ependymal cells, which also derive from radial glia and express GFAP, display typical glial properties and K(IR) currents consistent with their postmitotic nature. Our results suggest that GFAP-expressing cells in concert with ependymal cells can perform typical astrocytic functions such as K+ and glutamate buffering in the postnatal SVZ but display a unique set of functional characteristics intermediate between astrocytes and radial glia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app