Letter
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

On the origin of the ultrafast internal conversion of electronically excited pyrimidine bases.

The ultrafast radiationless decay of photoexcited uracil and cytosine has been investigated by ab initio quantum chemical methods based on CIS and CR-EOM-CCSD(T) electronic energy calculations at optimized CIS geometries. The calculated potential energy profiles indicate that the S(1) --> S(0) internal conversion of the pyrimidine bases occurs through a barrierless state switch from the initially excited (1)pipi state to the out-of-plane deformed excited state of biradical character, which intersects the ground state at a lower energy. This three-state nonradiative decay mechanism predicts that replacement of the C5 hydrogen by fluorine introduces an energy barrier for the initial state switch, whereas replacement of the C6 hydrogen by fluorine does not. These predictions are borne out by the very different fluorescence yields of 5-fluorinated bases relative to the corresponding 6-fluorinated bases. It is concluded from these results that the origin of the ultrafast radiationless decay is the same for the two pyrimidine bases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app