Add like
Add dislike
Add to saved papers

Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films.

Photoinduced electron transfer from the valence band of nanocrystalline NiO, a p-type semiconductor, to an excited bound dye, coumarin 343, and the subsequent recombination have been measured by femtosecond transient absorbance spectroscopy probing with white light. It was found that both processes are nonexponential. The photoinduced electron transfer from the semiconductor to the excited bound dye has an ultrafast component (approximately 200 fs), which is comparable to the time constants measured for photoinduced electron injection in C343-TiO2 colloid solutions. The process is very efficient and constitutes the main path of deactivation of the excited dye. Back electron transfer is also remarkably fast, with the main part of the recombination process happening with a time constant of approximately 20 ps. Dye-sensitized nanostructured p-type semiconductors are attractive materials due to their potential use as photocathodes in dye-sensitized solar cells and solid electrolytes in solid-state dye-sensitized solar cells. To our knowledge, this is the first time that the photoinduced electron-transfer kinetics of a sensitized p-type semiconductor has been studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app