Photoinduced ultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films

Ana Morandeira, Gerrit Boschloo, Anders Hagfeldt, Leif Hammarström
Journal of Physical Chemistry. B 2005 October 20, 109 (41): 19403-10
Photoinduced electron transfer from the valence band of nanocrystalline NiO, a p-type semiconductor, to an excited bound dye, coumarin 343, and the subsequent recombination have been measured by femtosecond transient absorbance spectroscopy probing with white light. It was found that both processes are nonexponential. The photoinduced electron transfer from the semiconductor to the excited bound dye has an ultrafast component (approximately 200 fs), which is comparable to the time constants measured for photoinduced electron injection in C343-TiO2 colloid solutions. The process is very efficient and constitutes the main path of deactivation of the excited dye. Back electron transfer is also remarkably fast, with the main part of the recombination process happening with a time constant of approximately 20 ps. Dye-sensitized nanostructured p-type semiconductors are attractive materials due to their potential use as photocathodes in dye-sensitized solar cells and solid electrolytes in solid-state dye-sensitized solar cells. To our knowledge, this is the first time that the photoinduced electron-transfer kinetics of a sensitized p-type semiconductor has been studied.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"