Add like
Add dislike
Add to saved papers

Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications.

Four donor-acceptor functionalized molecular materials with symmetrical structures have been synthesized and investigated for their use in optoelectronic applications. These pi-conjugated molecules consist of one electron-donating moiety, for instance, carbazole, triphenylamine, or phenothiazine at the center, and two acceptors at each side. Introduction of different donor moieties decreases the band gaps allowing a fine-tuning of the optical and electrical properties. These materials exhibit multifunctional properties, such as a red light-emitting behavior and a large photovoltaic effect. Red organic light-emitting diodes were fabricated in a facile nondoping configuration based on these materials. Saturated red-emission is observed with a CIE of x = 0.64 and y = 0.33, and an external quantum efficiency of 0.19%. In addition, our first observation of photovoltaic response in the pi-conjugated molecule with donor-acceptor-donor structure is reported. The organic single-component photovoltaic cells were fabricated and characterized. Their open-circuit voltage and short-circuit current density are 1.1 V and 0.07 mA cm(-2), respectively. The photovoltaic effect corresponds to the absorption characteristics of the compound and depends on the nature of the electron-donating group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app