Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model.

Two-photon absorption spectra (2PA) of a series of conjugated dimers and the corresponding monomer were studied in the near-IR region. All of the dimers show very large peak cross section values, sigma(2) = (3-10) x 10(3) GM (1 GM = 1 x 10(-50) cm(4) s photon(-1)), which is several hundred times larger than that obtained for the corresponding monomer in the same region. We explain such dramatic cooperative enhancement by a combination of several factors, such as strong enhancement of the lowest one-photon Q-transition, better resonance conditions in the three-level system, dramatic enhancement of the excited-state singlet-singlet transition, and parallel arrangement of consecutive transitions in dimers, as compared to perpendicular arrangement in the monomer. We show that the absolute values of the 2PA cross section in these molecules are quantitatively described by a quantum-mechanical expression, derived for the three-level model. We also demonstrate the possibility of singlet oxygen generation upon one- and two-photon excitation of these dimers, which makes them particularly attractive for photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app