Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.

Paclitaxel is used on drug-eluting stents because it inhibits proliferation of vascular cells. Stent thrombosis remains a concern with this compound, particularly with higher dosages. This study investigates the effect of paclitaxel on tissue factor (TF) expression in human endothelial cells. Paclitaxel enhanced thrombin-induced endothelial TF protein expression in a concentration- and time-dependent manner. A concentration of 10(-5) mol/L elicited a 2.1-fold increase in TF protein and a 1.6-fold increase in TF surface activity. The effect was similar after a 1 hour as compared with a 25-hour pretreatment period. Real-time polymerase chain reaction revealed that paclitaxel increased thrombin-induced TF mRNA expression. Paclitaxel potently activated c-Jun terminal NH2 kinase (JNK) as compared with thrombin alone, whereas the thrombin-mediated phosphorylation of p38 and extracellular signal-regulated kinase remained unaffected. Similar to paclitaxel, docetaxel enhanced both TF expression and JNK activation as compared with thrombin alone. The JNK inhibitor SP600125 reduced thrombin-induced TF expression by 35%. Moreover, SP600125 blunted the effect of paclitaxel and docetaxel on thrombin-induced TF expression. Paclitaxel increases endothelial TF expression via its stabilizing effect on microtubules and selective activation of JNK. This observation provides novel insights into the pathogenesis of thrombus formation after paclitaxel-eluting stent deployment and may have an impact on drug-eluting stent design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app