Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members.

Planta 2006 October
Lignin is an important biopolymer that is deposited in secondary cell walls of plant cells (e.g., tracheary elements) and in response to stresses such as wounding. Biosynthesis of lignin monomers occurs via the phenylpropanoid pathway, in which the enzyme 4-coumarate:CoA ligase (4CL) plays a key role by catalyzing the formation of hydroxycinnamoyl-CoA esters, subsequently reduced to the corresponding monolignols (hydroxycinnamoyl alcohols). 4CL is encoded by a family of four genes in Arabidopsis thaliana (At4CL1-At4CL4), which are developmentally regulated and co-expressed with other phenylpropanoid genes. We investigated in detail the wound-induced expression of At4CL1-At4CL4, and found that At4CL1 and At4CL2 mRNA accumulation follows biphasic kinetics over a period of 72 h, while At4CL4 expression is rapidly activated for a period of at least 12 h before declining. In order to localize cis-regulatory elements involved in the developmental and wound-induced regulation of the At4CL gene family members, At4CL promoter-beta-glucuronidase (GUS) reporter gene fusions were constructed and transferred into Arabidopsis plants. Analysis of these plants revealed that the promoter fragments direct discrete and distinct patterns of expression, some of which did not recapitulate expected patterns of wound-induced expression. The locations of regulatory elements associated with the At4CL2 gene were investigated in detail using a series of transgenic Arabidopsis plants containing promoter fragments and parts of the transcribed region of the gene fused to GUS. Positive and negative regulatory elements effective in modulating developmental expression or wound responsiveness of the gene were located both in the promoter and transcribed regions of the At4CL2 gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app