Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Circadian and homeostatic sleep regulation in morningness-eveningness.

Morningness-eveningness has been associated with the entrained circadian phase. However, we recently identified morning and evening types having similar circadian phases. In this paper, we compared parameters of slow-wave activity (SWA) decay in non-rapid-eye-movement (NREM) sleep between these two subgroups to test the hypothesis that differences in the dynamics of nocturnal homeostatic sleep pressure could explain differences in sleep timing preference. Twelve morning-type subjects and 12 evening-type subjects with evening types (aged 19-34 years) selected using the Morningness-Eveningness Questionnaire were further classified according to the phase of their dim light melatonin onset (DLMO). The six morning types with the earliest DLMO were compared to the six evening types with the latest DLMO ('extreme' phases), and the six morning types with the latest DLMO were compared to the six evening types with the earliest DLMO ('intermediate' phases). Subjects slept according to their preferred sleep schedule. Spectral activity in four midline derivations (Fz, Cz, Pz, Oz) was calculated in NREM sleep and an exponential decay function was applied on SWA data averaged per sleep cycle. In the subjects with intermediate circadian phases, both initial level and decay rate of SWA in Fz were significantly higher in morning than in evening types. No difference appeared between chronotypes of extreme circadian phases. There was no correlation between individual estimates of SWA decay and DLMO. These results support the hypothesis that chronotype can originate from differences in the dissipation of sleep pressure and that homeostatic and circadian processes influence the sleep schedule preference independently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app