Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity.

Liposomes represent a promising vehicle to deliver exogenous antigens to dendritic cells (DCs) for tumor immunotherapy. Targeting exogenous antigens to Fcgamma receptors on DCs has been shown to result in efficient presentation of antigen-derived peptides on major histocompatibility complex (MHC) class I and class II molecules. In this study, it was investigated whether DCs that endocytosed physicochemically optimized antigen-containing liposomes conjugated with IgG efficiently present antigens on MHC class I and class II molecules, and consequently induce strong antitumor immune responses. IgG-conjugated liposomes that were 200 nm in diameter without attaching polyethylene glycol were most efficiently endocytosed by DCs. Human monocyte-derived DCs that endocytosed tetanus toxoid (TT)-containing IgG liposomes via CD32 stimulated CD4(+) T cells more strongly than DCs pulsed with TT-containing bare liposomes or with soluble TT. Immunization of mice with DCs that endocytosed ovalbumin (OVA)-containing IgG liposomes but not OVA-containing bare liposomes or soluble OVA completely prevented the growth of OVA-expressing lymphoma cells. Importantly, administration of DCs that endocytosed OVA-containing IgG liposomes to the mice with established OVA-expressing tumors strongly suppressed tumor growth. This study demonstrates an IgG liposome with physicochemical properties suitable for delivering antigens to DCs and paves the way to the application of IgG liposomes for tumor immunotherapy using DCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app