Add like
Add dislike
Add to saved papers

Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism.

Complex coacervation between proteins and polysaccharides is a demixing process mainly driven by electrostatic interactions. During this process many structural transitions occur, involving the formation of soluble complexes, aggregated complexes, and coacervates. The dynamic mechanism of complexation/coacervation was studied on beta-lactoglobulin (BLG)/Acacia gum (AG) mixed dispersions (0.1 wt% total concentration; BLG:AG ratio of 2:1) using small angle static light scattering (SALS). Acidification of BLG/AG dispersions was induced by dissolution of 0.11 wt% glucono-delta-lactone, allowing in situ SALS measurements. Time evolution of turbidity, scattered light intensity at 46 degrees scattering angle (I46) or slope of scattering functions at high q range revealed the existence of six pH-induced structural transitions. During BLG/AG complexation and before coacervation took place, scattering profiles displayed a monotonic decrease of I(q) as a function of q. A correlation peak in the scattering functions was only observed when coacervates appeared in the system. The wave vector q(max) corresponding to the maximum in scattered intensity first shifted toward larger q values, indicating an increasing number of coacervates, then shifted toward smaller q values, as a consequence of the system coarsening. The power laws q(max) approximately t(-alpha) and I(max) approximately t(-beta) gave values of 1.9 and 9.2, respectively, values much larger than those expected for intermediate and late stages of spinodal decomposition. From these results, it was concluded that complex coacervation between BLG and AG was a nucleation and growth type process. In addition, the temporal evolution of I46 followed power laws with two different exponents. First exponent corresponding to BLG/AG complexation was 3.0+/-0.3 and indicated a diffusion-controlled growth mechanism. Second exponent corresponding to the initiation of phase separation to the coacervation process was 6.5+/-0.3 and revealed an interfacially-controlled growth mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app