Add like
Add dislike
Add to saved papers

Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics.

Many mine soils are chemically, physically, and biologically unstable and deficient. They are sometimes amended with sewage sludge and ashes but often contain heavy metals that increase the already high mine soils' heavy metal contents. Cd, Cr, Cu, Ni, Pb, and Zn in mutual competition were added to five mine soils (Galicia, Spain). Soil capacities for heavy metal sorption and retention were determined by means of distribution coefficients and selectivity sequences among metals. Influence of soil characteristics on sorption and retention was also examined. Retention selectivity sequences indicate that, in most of the soils, Pb is the preferred retained metal, followed by Cr. The last metals in these sequences are Ni, Cd, and Zn. Soil organic matter content plays a fundamental role in control of Pb sorption. Gibbsite, goethite, and mica influence Cr retention. Soil organic matter, oxides, and chlorite contents are correlated with K(d sigma sp medium). Heavy metals are weakly adsorbed by soils and then desorbed in high amounts. To recover these soils it is necessary to avoid the use of residues or ashes that contain heavy metals due to their low heavy metal retention capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app