Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas.

Signal transducer and activator of transcription 3 (STAT3) has been reported to be activated by interleukin-6 receptor (IL-6R) or epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC), which may have important implications for responsiveness to therapeutics targeted at EGFR, IL-6R, or intermediary kinases. Suppressor of cytokine signaling-1 (SOCS-1) has been implicated recently in the negative regulation of IL-6R/Janus-activated kinase (JAK)-mediated activation of STAT3, suggesting that SOCS-1 could affect alternative activation of STAT3 by EGFR, IL-6R, and associated kinases. We investigated whether epigenetic modification of SOCS-1 affects STAT3 activation in response to IL-6R-, EGFR-, JAK-, or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-mediated signal activation. STAT3 was predominantly activated by IL-6R via Jak1/Jak2 in HNSCC lines UMSCC-9 and UMSCC-38 in association with transcriptional silencing of SOCS-1 by hypermethylation. In UMSCC-11A cells with unmethylated SOCS-1, STAT3 activation was regulated by both EGFR and IL-6R via a JAK-independent pathway involving MEK. Pharmacologic inhibitors of JAK and MEK and expression of SOCS-1 following demethylation or transient transfection inhibited STAT3 activation and cell proliferation and induced cell apoptosis in corresponding cell lines. Hypermethylation of SOCS-1 was found in about one-third of human HNSCC tissues, making it a potentially relevant marker for STAT-targeted therapy in HNSCC patients. We conclude that SOCS-1 methylation status can differentially affect STAT3 activation by IL-6R and EGFR through JAK or MEK in different HNSCC and response to pharmacologic antagonists. Identifying the potential factors and the regulatory pathways in STAT3 activation has important implications for the development and selection of molecularly targeted therapy in HNSCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app