Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.

Applied Spectroscopy 2005 December
Fourier transform infrared (FT-IR) single bounce micro-attenuated total reflectance (mATR) spectroscopy, combined with multivariate and artificial neural network (ANN) data analysis, was used to determine the adulteration of industrial grade glycerol in selected red wines. Red wine samples were artificially adulterated with industrial grade glycerol over the concentration range from 0.1 to 15% and calibration models were developed and validated. Single bounce infrared spectra of glycerol adulterated wine samples were recorded in the fingerprint mid-infrared region, 900-1500 cm(-1). Partial least squares (PLS) and PLS first derivatives were used for quantitative analysis (r2 = 0.945 to 0.998), while linear discriminant analysis (LDA) and canonical variate analysis (CVA) were used for classification and discrimination. The standard error of prediction (SEP) in the validation set was between 1.44 and 2.25%. Classification of glycerol adulterants in the different brands of red wine using CVA resulted in a classification accuracy in the range between 94 and 98%. Artificial neural network analysis based on the quick back propagation network (BPN) and the radial basis function network (RBFN) algorithms had classification success rates of 93% using BPN and 100% using RBFN. The genetic algorithm network was able to predict the concentrations of glycerol in wine up to an accuracy of r2 = 0.998.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app