Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Small molecules that delay S phase suppress a zebrafish bmyb mutant.

Bmyb is a ubiquitously expressed transcription factor involved in cellular proliferation and cancer. Loss of bmyb function in the zebrafish mutant crash&burn (crb) results in decreased cyclin B1 expression, mitotic arrest and genome instability. These phenotypic observations in crb mutants could be attributed to the decreased expression of cyclin B1, a cell-cycle regulatory protein that is responsible for driving cell progression from G2 through mitosis. To identify small molecules that interact with the bmyb pathway, we developed an embryo-based suppressor screening strategy. In 16 weeks we screened a diverse approximately 16,000 compound library, and discovered one previously unknown compound, persynthamide (psy, 1), that suppressed bmyb-dependent mitotic defects. Psy-treated embryos showed an S-phase delay, and knockdown of the cell-cycle checkpoint regulator ataxia telangiectasia--and Rad-related kinase (ATR) abrogated the suppression of crb. The DNA synthesis inhibitors aphidicolin (2) and hydroxyurea (3) also suppressed crb. S-phase inhibition upregulated cyclin B1 mRNA, promoting the progression of cells through mitosis. Our study demonstrates that chemical suppressor screening in zebrafish can identify compounds with cell-cycle activity and can be used to identify pathways that interact with specific cell-cycle phenotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app