Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel aromatic ester from Piper longum and its analogues inhibit expression of cell adhesion molecules on endothelial cells.

Biochemistry 2005 December 7
We report here the isolation and characterization of two active principles, ethyl 3',4',5'-trimethoxycinnamate (1) and piperine (2), from the combined hexane and chloroform extracts of Piper longum. Using primary human umbilical vein endothelial cells, we evaluated the activities of compound 1 on TNF-alpha-induced expression of cell adhesion molecules, viz., ICAM-1, VCAM-1, and E-selectin, which play key roles in controlling various inflammatory diseases. Both compounds 1 and 2 inhibited the TNF-alpha-induced expression of ICAM-1 in a dose- and time-dependent manner; however, the activity of ethyl 3',4',5'-trimethoxycinnamate (1) was approximately 1.3 times higher than that of piperine (2). As ethyl 3',4',5'-trimethoxycinnamate (1) has been isolated for the first time from a natural source, Piper longum, and it exhibited higher activity, we carried out further studies on it. To correlate its cell adhesion molecule inhibitory activity with its functional consequences, we showed that it significantly blocked the adhesion of neutrophils to endothelium in a time- and concentration-dependent manner. Importantly, the inhibitory effect of cinnamate 1 was found to be reversible. To elucidate its structure-function-activity relationship, we synthesized nine different analogues of ethyl 3',4',5'-trimethoxycinnamate, i.e., compounds 3-11, and compared the ICAM-1 inhibitory activity of compound 1 with those of its synthetic analogues as well as the corresponding acids 12-15. The structure-activity studies indicate that the chain length of the alcohol moiety, substituents in the aromatic ring, and alpha, beta-double bond of the cinnamic acid ester have significant effects on the inhibition of TNF-alpha-induced expression of ICAM-1 on endothelial cells. These findings have implications in developing compounds with a better therapeutic index against various inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app