JOURNAL ARTICLE

Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2

Bernard Wenger, Michael Grätzel, Jacques-E Moser
Journal of the American Chemical Society 2005 September 7, 127 (35): 12150-1
16131154
Because of their successful use in dye-sensitized solar cells, Ru(II) polypyridyl complex dyes adsorbed on nanocrystalline TiO2 films have been regarded as model systems for the experimental study of the ultrafast dynamics of interfacial light-induced electron transfer. Most studies have reported charge injection kinetics from Ru(dcbpyH2)2(NCS)2 (N3) to take place with a fast (sub-100 fs) phase, followed by a slower (0.7-100 ps) multiexponential component. This complex, multiphasic behavior observed for the electron injection process has prevented the development of a satisfying kinetic model and has led to often contradicting conclusions. Here, we show that the observed kinetic heterogeneity can result from the aggregation of sensitizer molecules on the surface. Carefully controlled deposition of Ru(II) complex dye molecules onto nanocrystalline titania consistently yields a monophasic injection dynamics with a time constant shorter than 20 fs. The latter figure suggests the process is beyond the scope of vibration-mediated electron transfer kinetic models and might be controlled by the electron dephasing in the solid.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16131154
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"