Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification.

Diabetes 2005 August
Leptin augments glucose and lipid metabolism independent of its effect on satiety. Administration of leptin in rodents increases skeletal muscle beta-oxidation by activating AMP-activated protein kinase (AMPK). We previously reported that, as hyperleptinemic as obese human subjects, transgenic skinny mice overexpressing leptin in liver (LepTg) exhibit enhanced insulin sensitivity and lipid clearance. To assess skeletal muscle AMPK activity in leptin-sensitive and -insensitive states, we examined phosphorylation of AMPK and its target, acetyl CoA carboxylase (ACC), in muscles from LepTg under dietary modification. Here we show that phosphorylation of AMPK and ACC are chronically augmented in LepTg soleus muscle, with a concomitant increase in the AMP-to-ATP ratio and a significant decrease in tissue triglyceride content. Despite preexisting hyperleptinemia, high-fat diet (HFD)-fed LepTg develop obesity, insulin-resistance, and hyperlipidemia. In parallel, elevated soleus AMPK and ACC phosphorylation in regular diet-fed LepTg is attenuated, and tissue triglyceride content is increased in those given HFD. Of note, substitution of HFD with regular diet causes a robust recovery of soleus AMPK and ACC phosphorylation in LepTg, with a higher rate of body weight reduction and a regain of insulin sensitivity. In conclusion, soleus AMPK and ACC phosphorylation in LepTg changes in parallel with its insulin sensitivity under dietary modification, suggesting a close association between skeletal muscle AMPK activity and sensitivity to leptin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app