Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adrenomedullin inhibits angiotensin II-induced oxidative stress and gene expression in rat endothelial cells.

Adrenomedullin (AM), a potent vasodilator peptide, has recently been suggested to function as an endogenous antioxidant. However, its potential site of action at the cellular level has not been clarified. The present study was undertaken to investigate whether AM directly inhibits intracellular reactive oxygen species (ROS) generation and redox-sensitive gene expression stimulated by angiotensin (Ang) II in rat aortic endothelial cells (ECs). Ang II (10(-7) mol/l) significantly increased intracellular ROS levels in ECs as measured by dichlorofluorescein (DCF) fluorescence. AM inhibited Ang II-stimulated ROS generation in a dose-dependent manner and this effect was abolished by a superoxide radical scavenger, NAD(P)H oxidase inhibitor, and a protein kinase A (PKA) inhibitor, and mimicked by a cell-permeable cAMP analog. A real-time reverse transcription-polymerase chain reaction (RT-PCR) study showed that Ang II significantly upregulated a set of redox-sensitive genes (ICAM-1, VCAM-1, PAI-1, tissue factor, MCP-1, osteopontin), and these effects were blocked by an antioxidant, N-acetyl cysteine (NAC). AM similarly and dose-dependently inhibited the Ang II-induced upregulation of the entire set of these genes via a receptor-mediated and PKA-dependent pathway, and the degrees of inhibition were similar to those by NAC. In conclusion, the present study demonstrated that AM potently blocked the Ang II-stimulated intracellular ROS generation from NAD(P)H oxidase and the subsequent redox-sensitive gene expression via a cAMP-dependent mechanism in ECs, suggesting that AM has vasculoprotective effects against pro-oxidant stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app