Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electronic effect of different positions of the -NO2 group on the DNA-intercalator of chiral complexes [Ru(bpy)2L]2+ (L =o-npip, m-npip and p-npip).

New chiral Ru(II) complexes with intercalators L (L =o-npip, m-npip and p-npip) containing -NO2 at different positions on the phenyl ring were synthesized and characterized by elemental analysis, 1H NMR, ESI-MS and CD spectra. The DNA binding properties of these complexes have been investigated with UV-Vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of these isomers with CT-DNA. Absorption spectroscopy experiments indicated that each of these complexes can interact with the DNA. The DNA-binding of the Delta-isomer is stronger than that of Lambda-isomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)2(o-npip)](PF6)2 bind to DNA with partial intercalation, and both Delta- and Lambda-[Ru(bpy)(2)(p-npip)](PF6)2 fully intercalate with DNA. However, Delta- and Lambda- [Ru(bpy)2(m-npip)](PF6)2 bind to DNA through different modes, i.e., the Delta isomer by intercalation and Lambda isomer by partial intercalation. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA. The most interesting feature is that neither 1 (Delta-1 and Lambda-1) nor 3 (Delta-3 and Lambda-3) emit luminescence either alone in aqueous solution or in the presence of DNA, whereas both Delta-2 and Lambda-2 emit luminescence under the same conditions. In addition, theoretical calculations for these three isomer complexes have been carried out applying the density functional theory (DFT) method at the level of the B3LYP/LanL2DZ basis set, and the calculated results can reasonably explain the obtained experimental trends in the DNA-binding affinities or binding constants (Kb) and some spectral properties of the complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app