Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Probing of porphyrin surface chemistry in systems with laser-ablated Ag nanoparticle hydrosol: role of thiosulfate anions.

The influence of sodium thiosulfate (THS) concentration in Ag colloid/THS/H(2)TMPyP and Ag colloid/H2TMPyP/THS systems (H2TMPyP = 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin) was investigated by a combination of surface-enhanced resonance Raman scattering (SERRS) spectroscopy, surface plasmon extinction (SPE) measurements, and transmission electron microscopy (TEM). THS was found to have a strong impact on Ag nanoparticle surface structure and aggregation state and on interaction with H2TMPyP probe molecules, as evidenced by variations of the SERRS spectrum. In the Ag colloid/THS/H2TMPyP system, when laser-ablated Ag colloid was THS pretreated prior to the porphyrin addition, a critical threshold THS concentration (4 x 10(-5) M) was discovered. At concentrations below the threshold, THS mainly reduces the number of Ag+ adsorption sites. This leads to increased Ag nanoparticle aggregation prior to the porphyrin addition and significant weakening of the overall SERRS signal. Dominant contributions in the SERRS spectrum correspond to free base H2TMPyP and Ag+ containing the AgTMPyP form. At concentrations above the threshold, THS mediates also the formation and stabilization of new adsorption sites, probably Ag(0) sites. This induces a turn in the aggregation state of the pretreated Ag-c/THS system, an increase of the overall SERRS signal, and the appearance of a new spectral form of Ag metalated porphyrin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app