Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp.

Adaptive motor behavior requires efficient error detection and correction. The posterior parietal cortex is critical for on-line control of reach-to-grasp movements. Here we show a causal relationship between disruption of cortical activity within the anterior intraparietal sulcus (aIPS) by transcranial magnetic stimulation (TMS) and disruption of goal-directed prehensile actions (either grip size or forearm rotation, depending on the task goal, with reaching preserved in either case). Deficits were elicited by applying TMS within 65 ms after object perturbation, which attributes a rapid control process on the basis of visual feedback to aIPS. No aperture deficits were produced when TMS was applied to a more caudal region within the intraparietal sulcus, to the parieto-occipital complex (putative V6, V6A) or to the hand area of primary motor cortex. We contend that aIPS is critical for dynamic error detection during goal-dependent reach-to-grasp action that is visually guided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app